Super-infrastructure for Biomedical Text Mining

Abstract

In this talk we describe a novel super-infrastructure for biomedical text mining which incorporates an end-to-end pipeline for the collection, annotation, storage, retrieval and analysis of biomedical and life sciences literature, combining NLP and corpus linguistics methods. The infrastructure permits extreme-scale research on the open access PubMed Central archive. It combines an updatable Gene Ontology Semantic Tagger (GOST) for entity identification and semantic markup in the literature, with a NLP pipeline scheduler (Buster) to collect and process the corpus, and a bespoke columnar corpus database (LexiDB) for indexing. The corpus database is distributed to permit fast indexing, and provides a simple web front-end with corpus linguistics methods for sub-corpus comparison and retrieval. GOST is also connected as a service in the Language Application (LAPPS) Grid, in which context it is interoperable with other NLP tools and data in the Grid and can be combined with them in more complex workflows. In a literature based discovery setting, we have created an annotated corpus of 9,776 papers with 5,481,543 words.

Date
Location
Lancaster University, United Kingdom
Avatar
Nathan S. Rutherford
PhD Research Student in Information Security (CDT)

PhD research student in Information Security, based within the CDT in Cyber Security at the Royal Holloway, Univeristy of London.